

Journal of Applied Biosciences 167: 17291 – 17303 ISSN 1997-5902

Sélection de cacaoyers (*Theobroma cacao* L.) présentant un bon grainage au sein de la principale collection de Côte d'Ivoire.

Boguinard Sahin Honorine GUIRAUD¹; Gnion Mathias TAHI¹; Klotioloma COULIBALY¹, Evelyne Maryse ASSI¹; Sandrine Okayo MINAKOU¹; Mathurin Yves ATCHI ¹; Philippe LACHENAUD³ & & Irié Arsène ZORO²

¹Centre National de Recherche Agronomique (CNRA), Programme Cacao, Opération Amélioration variétale, BP 808 Divo, Côte d'Ivoire

²Université Nangui Abrogoua d'Abidjan (UNA), UFR des Sciences de la Nature, Unité de Phytotechnie et Amélioration génétique, 02 BP 801 Abidjan 02, Côte d'Ivoire.

E-mail auteur correspondant : brigo2008@yahoo.fr

Submitted on 24th August 2021. Published online at www.m.elewa.org/journals/ on 30th November 2021 https://doi.org/10.35759/JABs.167.2

RESUME

Description du sujet : L'article aborde une étude comparative de 394 clones issus de la principale collection de cacaoyers du CNRA.

Objectifs: L'objectif de l'étude est d'identifier au sein de la collection de cacaoyers du CNRA, les meilleurs clones pour des caractères d'intérêts agronomiques.

Méthodologie et Résultats: Trois cent quatre-vingt-quatorze (394) clones ont été évalués à l'aide de 6 paramètres agronomiques. Trente clones parmi les meilleurs identifiés, ont été évalués à l'aide de 10 autres paramètres technologiques. Les clones IFC 1027, IFC 1041 et IFC 1026 ont obtenu les meilleures valeurs avec respectivement 131, 137 et 149 cabosses par arbre en moyenne. Par ailleurs, les clones ACU 85 (avec 71 fèves pour 100 g de cacao marchand) et IFC 1037 (3,8 g) ont présenté les meilleures valeurs respectivement pour le nombre de fèves pour 100 g de cacao marchand et le poids moyen d'une fève.

Conclusion et application des résultats :Il ressort de cette étude que les clones ACU 85 et IFC 1037 ont présenté un très bon grainage. Ces génotypes pourraient être utilisés comme des potentiels géniteurs pour l'amélioration génétique des caractères de production, de résistance au champ à la pourriture brune des cabosses et aux mirides. Cependant, en prélude à leur insertion dans un programme d'amélioration variétale, la validation des performances agronomiques des clones intéressants s'avère nécessaire, vu la nature quantitative des caractères, fortement influencés par l'environnement.

Mots clés: Identification, *Theobroma cacao*, prometteurs, Côte d'Ivoire

³ Centre International pour la Recherche et le développement (CIRAD), UR Bioagresseurs, analyse et gestion du risque, 34398 Montpellier Cedex 5, France.

Identification of promising cocoa trees (*Theobroma cacao* L.) for potential production and seeds from of Côte d'Ivoire

ABSTRACT

Description of the subject: The article deals with a comparative study of 394 clones stemming from the CNRA's main collection of cocoa trees.

Objectives: The objective of the study is to select within the CNRA cocoa collection the best clones for traits of agronomic interest.

Methodology and Results: 394 clones were evaluated using 6 agronomic parameters. Thirty of the best clones identified were evaluated using 10 other technological parameters. The clones IFC 1027, IFC 1041 and IFC 1026 obtained the best values with respectively 131, 137 and 149 pods per tree on average. In addition, ACU 85 (with 71 beans per 100 g of marketable cocoa) and IFC 1037 (3.8 g) clones presented the best values respectively for the number of beans per 100 g of marketable cocoa and the average weight of a bean.

Conclusions and application of results: It emerges from this study that the ACU 85 and IFC 1037 clones exhibited very good graining. The genotypes could be used as potential generators for improvement genetics of production traits, resistance in the field to black pod rot and mirids. However, as a prelude to their inclusion in a varietal improvement program validation of the agronomic performance of interesting clones is necessary, given the quantitative nature of the characters, which are strongly influenced by the environment.

Keywords: Identification, Theobroma cacao, Côte d'Ivoire

INTRODUCTION

Le cacaoyer (Theobroma cacao Linné) est une plante pérenne, endémique de l'Amérique du Sud qui a été introduite en Afrique de l'Ouest en 1822 (Cheesman, 1944). Cette espèce qui appartient à la famille des Malvaceae (Alverson et al., 1999) est préférentiellement allogame, avec un fort taux d'auto-incompatibilité due à un système d'incompatibilité gaméto-sporophytique (Cope, 1958). C'est une espèce diploïde (2n = 2x = 20)dont la taille du génome a initialement été estimée à 380 Mpb (Figueira et al., 1992). Le cacaoyer constitue une culture très prisée dans le monde, principalement pour ses graines utilisées pour la fabrication du chocolat, de produits cosmétiques, pharmaceutiques et autres dérivés du cacao (Pires et al., 1998). Depuis une trentaine d'années, la Côte d'Ivoire est le premier pays producteur mondial de marchand avec une production respectivement estimée à 2 010 000 tonnes au cours de la campagne 2016-2017 (ICCO, 2017) et 2 150 000 tonnes de cacao marchand au titre de la campagne 2018-2019. Le secteur cacao en Côte d'Ivoire contribue ainsi à 15 % du Produit Intérieur Brut (PIB) et 30 % des recettes d'exportations (ICCO, 2014). Malgré cette performance remarquable, le contexte actuel de la cacaoculture ivoirienne est marqué par de nombreuses contraintes de production parmi lesquelles figurent le vieillissement du verger et la forte pression parasitaire due aux ravageurs tels que les mirides (Kouamé et al., 2014), les maladies telles que la pourriture brune des cabosses (Ali et al., 2017) et le faible niveau d'utilisation du matériel végétal amélioré (Tahi et al., 2011). Dans ces conditions, la recherche de génotypes présentant de très bonnes caractéristiques technologiques s'avère nécessaire en vue de l'introduction de ceux-ci dans un programme de sélection visant à produire et à diffuser aux paysans du matériel végétal amélioré. Pour améliorer l'efficacité de son programme de sélection variétale, le Centre National de Recherche Agronomique (CNRA), à l'instar des principaux centres de recherche sur le cacaoyer, dispose d'une collection de clones de cacaoyers qui constitue la base de travail du sélectionneur. Cette collection regroupe en son sein, plusieurs clones issus des principaux groupes génétiques (Besse, 1976). Elle est constituée de matériel végétal introduit à partir d'autres pays, de matériel végétal prospecté dans les vieilles cacaoyères ivoiriennes et de matériel végétal créé dans le cadre du programme d'amélioration conduit en Côte d'Ivoire (Lachenaud et al., 2001). L'utilisation efficiente de ces clones à des fins de sélection variétale passe nécessairement par une bonne caractérisation de ceux-ci. Après le développement de milliers de clones à haut rendement dans la plupart des centres de recherche sur le cacaoyer à travers le monde, les critères qui intéressent les sélectionneurs de nos jours sont le grainage et la qualité sensorielle du matériel végétal. Cette étude se situe dans cette optique. Elle vise à sélectionner au sein d'une population de clones de la collection du CNRA présentant des caractères d'intérêts agronomiques, les meilleurs génotypes pour les caractéristiques technologiques principalement marqué par le grainage.

MATERIEL ET METHODES

Site d'étude : L'étude a été réalisée à la station de recherche de Divo du Centre National de Recherche Agronomique de Côte d'Ivoire. Cette station, qui s'étend sur une superficie de 3570 ha, se trouve en zone forestière. Elle a pour coordonnées géographique 5°48 latitude Nord et 5°18 longitude Ouest. Le département de Divo est une zone de climat tropical humide. La végétation est caractérisée par des forêts denses humides. L'hydrographie est composée de plusieurs petits cours d'eaux, de nombreux ruisseaux et plusieurs étendues marécageuses (Konaté et al., 2016). Cette zone se caractérise par deux saisons pluvieuses (avril-juillet et octobre-novembre) et deux saisons sèches (décembre-mars et aout-septembre). La station de Divo enregistre en moyenne environ 1200 mm de pluie par an avec une hygrométrie élevée. Les sols sur cette station sont profonds, bruns foncés, argilo-sableux ou humifères. Ils présentent un faible pourcentage en potassium et un pH acide compris entre 5,2 et 6 (Roose & Jadin, 1969).

Matériel végétal: Le matériel végétal étudié est composé de 394 clones parmi lesquels 30 potentiellement hauts producteurs et résistants au champ à la pourriture brune ont été utilisés pour l'étude des paramètres agro-technologiques (Tableau 1). Deux génotypes, NA 32 et UF 676 connus respectivement pour leur bon potentiel de production et leur bon grainage, ont été utilisés comme des témoins de références (Lachenaud *et al.*, 2006).

Tableau 1 : Liste des clones de la collection A21 utilisés pour l'étude des paramètres morphologiques et technologiques

List of genotypes of A21 collection used to study the morphological and technological parameters.

Numéro	Clones	Localisation	Origine	Type de matériel	Généalogie
				végétal	
1	IFC1058	Bloc G Ligne 35	Côte d'Ivoire	Hybride cloné	UPA418 X IFC1
2	IFC1027	Bloc K Ligne 40	Côte d'Ivoire	Hybride cloné	T3 X UPA603
3	IFC1041	Bloc L Ligne 12	Côte d'Ivoire	Hybride cloné	UPA603 X C409
4	IFC1026	Bloc K Ligne 39	Côte d'Ivoire	Hybride cloné	T3 X UPA603
5	GU343/F	Bloc J Ligne 34	Guyane	Clone du groupe génétique Guiana	-
6	CC39	Bloc I Ligne 40	Costa Rica	Hybrides cloné	Matina X Inconnu
7	DLM2	Bloc I Ligne 38	Congo	Hybride cloné	M2 X Inconnu
8	IFC1035	Bloc L Ligne 6	Côte d'Ivoire	Hybride cloné	UPA206 X IFC1
9	IFC1201	Bloc L Ligne 32	Côte d'Ivoire	Hybride cloné	PA150 X IFC5
10	IFC698	Bloc E Ligne 16	Côte d'Ivoire	Hybride cloné	T60/974 X Inconnu
11	IFC1025	Bloc K Ligne 35	Côte d'Ivoire	Hybride cloné	T38 X UPA402
12	IFC1060	Bloc L Ligne 25	Côte d'Ivoire	Hybride cloné	UPA418 X IFC1
13	IFC1059	Bloc L Ligne 24	Côte d'Ivoire	Hybride cloné	UPA418 X IFC1
14	IFC706	Bloc E Ligne 19	Côte d'Ivoire	Hybride cloné	T60/974 X
	11 0700				Inconnu
15	IFC1062	Bloc L Ligne 27	Côte d'Ivoire	Hybride cloné	UPA606 X
					IFC405
16	ACU85	Bloc G Ligne 14	Ghana	Clone Trinitario	-
17	DLE31	Bloc I Ligne 35	Congo	Hybride cloné	E31 X Inconnu
18	IFC705	Bloc E Ligne 18	Côte d'Ivoire	Hybride cloné	T60/974 X
	11 0703				Inconnu

Guiraud et al., J. Appl. Biosci. Vol: 167 2021 Sélection de cacaoyers (Theobroma cacao L.) présentant un bon grainage au sein de la principale collection de Côte d'Ivoire

19	IFC687	Bloc E Ligne 15	Côte d'Ivoire	Hybride cloné	T60/974 X
	IFC067				Inconnu
20	SF153	Bloc H Ligne 40	Cote d'Ivoire	Clone Amelonado	-
21	SPEC160	Bloc K Ligne 34	Colombie	Clone spontané de	-
	SIECIOO			Colombie	
22	IFC682	Bloc E Ligne 13	Côte d'Ivoire	Hybride cloné	T60/974 X
	11 C002				Inconnu
23		Bloc D Ligne 41	Côte d'Ivoire	Hybride cloné	T85/78 X
	UPA705				T87/1309
24	IFC6	Bloc G Ligne 6	Côte d'Ivoire	Clone Trinitario	-
25	IFC679	Bloc E Ligne 12	Côte d'Ivoire	Hybride cloné	T60/974 X
	11 0077				Inconnu
26	GU346/R	Bloc J Ligne 33	Guyane	Clone du groupe	-
				génétique Guiana	
27	IFC1037	Bloc L Ligne 8	Côte d'Ivoire	Hybride cloné	UPA517 X IFC5
28	IFC683	Bloc E Ligne 14	Côte d'Ivoire	Hybride cloné	T60/974 X
					Inconnu
29	NA32	Bloc A Ligne 5	Haute Amazonie	Clone Forastero	
	(Témoin)			Haut Amazonien	
30	UF676	Bloc G Ligne 10	Amérique Centrale	Clone Trinitario	
	(Témoin)				

Dispositif expérimental: Le dispositif de plantation de la collection A21 est un bloc aléatoire complet composé de 12 sous blocs de 42 lignes dont chacune comprend cinq arbres par clone. Un total de 504 clones et de 2520 arbres ont été plantés sur cette parcelle pour une superficie de 1,9 ha, suivant des écartements de 3 m x 2,5 m. Ces cacaoyers âgés de 30 ans pour la plupart bénéficient de suivi et d'entretien réguliers.

Caractérisation agronomique des clones de la collection du CNRA: Trois cent quatre-vingt-quatorze (394) clones de la collection du CNRA ont été évalués avec trois paramètres agronomiques. Sur chaque arbre, trois séries de données ont été collectées successivement au cours des récoltes principales de 2016, 2017 et 2018. Les paramètres mesurés sont le nombre de cabosses

saines par arbre (NCS), le nombre de cabosses pourries par arbre (NCP) et le nombre de cabosses présentant des piqures de mirides ou autres dégâts par arbre (NCM). Les données ainsi mesurées ont été utilisés pour calculer le nombre total de cabosses (NTC), le taux de cabosses pourries (TCP) et le taux de cabosses présentant des piqures de mirides ou autres dégâts (TAM); (Tableau 2). Cette étude a abouti au classement des clones et la mise en évidence de 54 clones prometteurs pour ces trois critères. Par la suite, 30 des meilleurs clones potentiellement hauts producteurs et présentant un taux de cabosses pourries compris entre 0 et 15 % ont été évalués avec 10 autres paramètres agronomiques mesurés sur les cabosses et les fèves (Tableau 3).

Tableau 2 : Paramètres mesurés pour l'étude de la diversité agronomique de clones de cacaoyers (*T. cacao* L.) contenus dans la principale collection de cacaoyer du CNRA-

Parameters measured for the study of agro-morphological diversity of cocoa clones (T. cacao L.) contained in the main cocoa collection of CNRA.

Paramètres	Caractères mesurés par arbre	Codes	Description
Paramètres	nombre de cabosses saines	NCS	nombre de cabosses saines
agronomiques	nombre de cabosses pourries	NCP	nombre de cabosses pourries
mesuré sur les	nombre de cabosses attaquées	NCM	nombre de cabosses présentant des piqures
arbres	par les mirides	NCIVI	de mirides ou autres dégâts
	Nombre total de cabosses	NTC	nombre total de cabosses saines, cabosses pourries et cabosses attaquées par les mirides
Paramètres agronomique déterminés	Taux de cabosses pourries	ТСР	rapport du nombre total de cabosses pourries sur le nombre total de cabosses produites par arbre (NCP/NTC)
	Taux d'attaques dû aux mirides.	TAM	rapport du nombre total de cabosses présentant des piqures de mirides ou autres dégâts sur le nombre total de cabosses produites par arbre (NCM/NTC)

Tableau 3. Paramètres technologiques mesurés sur 30 clones de cacaoyers de la collection du CNRA *Technological parameters measured on some cocoa clones of the CNRA collection.*

Paramètres	mesures	Codes (unités)	Description et type d'observation	
	Poids moyen d'une cabosse	PC (g)	Paramètre mesuré sur 15 cabosses par arbre et	
			5 arbres par génotype	
	Poids moyen d'une cabosse	PCV (g)	Paramètre mesuré sur 15 cabosses par arbre et	
	vide		5 arbres par génotype	
	Epaisseur du cortex par	EC (cm)	Paramètre mesuré sur 15 cabosses par arbre et	
relatifs aux	cabosse		5 arbres par génotype	
cabosses	Nombre de fèves normales par	NFN (unité)	Il s'agit des fèves non vides. Paramètre	
Cabosses	cabosse		mesuré sur 15 cabosses par arbre et 5 arbres	
			par génotype	
	Poids des fèves normales par	PFN (g)	Paramètre mesuré sur 15 cabosses par arbre et	
	cabosse		5 arbres par génotype	
	Volume d'une cabosse	VC (cm ³)	déterminé par la formule : $V = L. (\pi.D)^2/22$ et	
			5 arbres par génotype	
	Poids moyen d'une fève	PF(g)	Paramètre mesuré sur 15 fèves par cabosse, 15	
	normale		cabosses et 5 arbres par génotype	
	Longueur d'une fève normale	LoF (cm)	Paramètre mesuré sur 15 fèves par cabosse, 15	
relatifs aux			cabosses et 5 arbres par génotype	
fèves	Largueur (diamètre) d'une fève	LaF (cm)	Paramètre mesuré sur 15 fèves par cabosse, 15	
16 7 65	normale		cabosses et 5 arbres par génotype	
	Nombre de fèves pour 100 g de	Nf100	Paramètre déterminé sur 15 fèves sèches	
	cacao marchand		issues de fermentation des fèves issues de 45	
			cabosses collectées par un clone	

Analyses statistiques des données collectées: Dans le cadre de cette étude, les données ont été analysées avec le logiciel SAS 9.4. L'analyse statistique des données recueillies a consisté en une étude comparative des clones afin de mettre en évidence d'éventuelles différences entre eux pour

chacun des paramètres mesurés. À cet effet, l'analyse de la variance (ANOVA) a été préalablement utilisée. Toute ANOVA significative (P < 0.05) est suivie du test de la plus petite différence significative (ppds) afin de classer les différents clones pour le caractère considéré.

RESULTATS

Comparaison des clones pour le nombre total de cabosses (NTC), le taux de cabosses pourries (TCP) et le taux de cabosses attaquées par les mirides (TAM): Les résultats de cette étude ont mis en évidence un effet clone, c'est-à-dire qu'une différence hautement significatif (P < 0.0001) entre les clones étudiés pour le nombre total de cabosses (NTC). En raison de l'effectif important des clones étudiés, les résultats présentés dans ce manuscrit ne concernent que ceux des 54 meilleurs pour le NTC, présentant un taux de cabosses pourries (TCP) inférieur ou égal à 10 % (Tableau 4). Pour ces 54 meilleurs clones, le NTC a varié de 40,2 (IFC 711) à 149,4 (IFC 1027) cabosses par arbre. Le taux de cabosses pourries (TCP) et le taux de cabosses attaquées par les mirides (TAM) ont également été présentés pour chacun des 54 clones. Le TCP a varié de 0 % (IFC 1026, DLM 2, IFC 1029, BE3, SF 152, PM 118, IFC 711) à 10 % (IFC 1041, GU

343/F, IFC 16, IFC 1210, ACU 85, DLE 31, IFC 1037, PA 150, DLE 22, UPA 604, UF 676, IFC 1060, SPEC 160). Quant au TAM, il a varié de 0 % (IFC 1041, GU 343/F, IFC 1035, IFC 1025, IFC1210, IFC 1039, CF 62, IFC 1037, SPEC 160) à 18% (IFC 1048). Le clone NA 32 utilisé comme témoin productif a obtenu en moyenne 50 cabosses par arbre, un taux de cabosses pourries de 20 % et un taux de cabosses attaquées par les mirides de 15 %. Trente-sept (37) clones ont présenté un NTC variant de 50,2 (PA 150) à 149,4 cabosses par arbre (IFC 1027), significativement supérieur à celui du témoin NA 32. Les neuf (9) clones en tête de classement pour ce caractère (IFC 1027, IFC 1041, IFC 1026, GU343/F, CC39, IFC 1035, IFC 1038, DLM 2, IFC 1201) ont présenté un nombre total de cabosses par arbre supérieur ou égal à 100. Pour ces neuf clones, le TCP et le TAM ont varié respectivement de 0 à 10 % et de 0 à 13 %.

Tableau 4. Valeurs moyennes (± écart type) de paramètres agronomiques analysés chez les 54 meilleurs clones de cacaoyers de la collection du CNRA *Mean values* (± standard deviation) of agronomic parameters analyzed in the 54 best cocoa clones in the

CNRA collection.

Numéros	Génotypes	NTC	ТСР	TAM
1	IFC1027	$149,4 \pm 67,66$	0.06 ± 0.05	0.02 ± 0.04
2	IFC1041	$137,33 \pm 44,65$	0.1 ± 0.1	0 ± 0
3	IFC1026	$131,33 \pm 98,41$	0 ± 0	0.03 ± 0.06
4	GU343/F	$130 \pm 1,41$	$0,1 \pm 0$	0 ± 0
5	CC39	$120,5 \pm 50,4$	0.05 ± 0.06	0.03 ± 0.05
6	IFC1035	112 ± 9	0.03 ± 0.06	0 ± 0
7	IFC1038	$112 \pm 17,09$	0.03 ± 0.06	0.03 ± 0.06
8	DLM2	$108,33 \pm 45,17$	0 ± 0	0.03 ± 0.06
9	IFC1201	$102,67 \pm 22,94$	0.07 ± 0.06	0.13 ± 0.06
10	IFC698	98,67 ± 117,64	0 ± 0	0.13 ± 0.12
11	IFC16	$97 \pm 60,42$	0.1 ± 0.07	$0,12 \pm 0,08$
12	IFC1058	91 ± 0.03	0.03 ± 0.06	$0,1 \pm 0,1$
13	IFC1029	$83,5 \pm 0,71$	0 ± 0	0.1 ± 0
14	IFC1025	$82,6 \pm 51,16$	0.06 ± 0.05	0 ± 0
15	IFC1210	$78,25 \pm 41,31$	0.1 ± 0.12	0 ± 0
16	SF143	$74,5 \pm 28,2$	0.08 ± 0.1	0.1 ± 0
17	IFC718	$66,2 \pm 16,47$	0.02 ± 0.04	0.04 ± 0
18	IFC 706	65,6±44,31	$0,04\pm0,06$	$0,12\pm0,13$
19	IFC1048	$65 \pm 35{,}21$	0.08 ± 0.04	0.18 ± 0.13
20	ACU85	$63,5 \pm 28,8$	0.1 ± 0.08	$0,13 \pm 0,05$

	P	<0,0001	<0,0001	<0,0001	
	F	3,21	1,72	1,65	
	CV	58,02	112,63	141,69	
57	Moyenne	25,51	0,11	0,06	
54	IFC711	$40,0 \pm 42,28$ $40,25 \pm 26,54$	0.02 ± 0.04 0 ± 0	0.20 ± 0.18 0.03 ± 0.05	
53	IFC087 IFC7	$42,23 \pm 33,97$ $40,6 \pm 42,28$	0.03 ± 0.06 0.02 ± 0.04	0.03 ± 0.06 0.26 ± 0.18	
51 52	IFC687	$43,75 \pm 54,57$ $42,25 \pm 35,97$	0.10 ± 0.17 0.05 ± 0.06	0 ± 0 $0,05\pm0,06$	
51	SPEC 160	- , - ,-	0.06 ± 0.05 0.10 ± 0.17	0,04 ± 0,05 0±0	
49 50	GU277/G	43.5 ± 19.09 43.4 ± 29.81	0.05 ± 0.07 0.06 ± 0.05	0.2 ± 0	
	SNK12 IFC712	44,25 ± 39,3	0.08 ± 0.1	0.08 ± 0.05	
47 48	IFC 1062	44,25±39,43	0.08 ± 0.1	0.08 ± 0.05	
46	IFC 1059	44,33±26,58	0.06 ± 0.5	0,07±0,12	
45 46	IFC 1060	44,67±41,26	0.1 ± 0.1	0,1±0,1	
44	UF676	46,33 ± 36,5	0.1 ± 0	0.13 ± 0.06	
43	UPA604	47 ± 12,47	0.1 ± 0.07	0.12 ± 0.04	
42	SF161	47.6 ± 48.13	0.04 ± 0.05	0.06 ± 0.09	
41	PM118	48,33 ± 42,1	0 ± 0	0.03 ± 0.06	
40	DLE22	48,33 ± 42,36	0.1 ± 0.1	0.1 ± 0.1	
39	IFC683	49,75 ± 58,37	0.08 ± 0.1	0.13 ± 0.19	
38	IFC1044	50 ± 32,65	0.05 ± 0.06	0.05 ± 0.1	
37	PA150	50,2 ± 57,13	0.1 ± 0.12	0.14 ± 0.11	
36	GU346/R	51,5 ± 35,74	0.08 ± 0.05	0.05 ± 0.06	
35	IFC679	51,8 ± 102,83	0.02 ± 0.04	0.02 ± 0.04	
34	SF152	52,5 ± 71,42	0 ± 0	0.05 ± 0.07	
33	UPA705	53,4 ± 30,94	0.08 ± 0.08	0.06 ± 0.05	
32	IFC6	53,4 ± 29,54	0.02 ± 0.04	0.34 ± 0.05	
31	SF73	54,5 ± 23,33	0.05 ± 0.07	0.1 ± 0	
30	IFC11	54,75 ± 27,66	0.08 ± 0.1	0.08 ± 0.1	
29	IFC 682	56,2±59,2	0,2±0,14	0,06±0,09	
28	PA4	57,33 ± 38,55	0.07 ± 0.06	0.13 ± 0.06	
27	BE3	57,33 ± 44,61	0 ± 0	0.13 ± 0.12	
26	SF153	58,75 ± 69,29	0.05 ± 0.06	0.08 ± 0.05	
25	IFC1037	59 ± 57,98	0.1 ± 0.14	0 ± 0	
24	CF62	59,6 ± 88	0.08 ± 0.08	0 ± 0	
23	IFC1039	61 ± 43,75	0.08 ± 0.1	0 ± 0	
22	IFC705	62,8 ± 36,91	0.04 ± 0.05	0.06 ± 0.05	
22	TTOTAL	(0.0 . 0.01	0.04 . 0.05		

NTC : Nombre total de cabosses- *Total number of pods* ; TCP : Taux d'attaque de la pourriture brune des cabosses- *Brown pod attack rate of pods* ; TAM : Taux d'attaque dû aux mirides- *Attack rate due to miridess*

Comparaison des clones pour les caractères technologiques

Le **tableau 5** présente une étude comparative de 30 clones de la collection du CNRA en fonction de six paramètres morpho-technologiques. L'analyse du tableau indique une différence très hautement significative (P < 0,0001) entre les 30 clones pour les paramètres poids des cabosses (PC), poids des cabosses vides (PCV), nombre de fèves normales (NFN), poids des fèves normales (PFN), volume de la cabosse (VC) et l'épaisseur du cortex (EC). Le poids moyen des cabosses a varié de 280 g (IFC 679) à 756 g (UF 676) pour une moyenne générale de 433,31 \pm 26,36 g et un coefficient de variation de 21,36. Le poids des cabosses vides (PCV) a été compris entre 196,06 g (IFC 679) et 566,26 g (UF

676) pour une moyenne de $320,14 \pm 0,62$ g et un coefficient de variation de 22,64. Le nombre de fèves normales a varié de 29,54 (GU 346/R) à 47,67 (IFC 1060) pour une moyenne de 37,30 \pm 0,19 et un coefficient de variation de 21,13. Quant au poids de fèves normales, il a été compris entre 81,4 g (GU 343/F) et 179,9 g (UF 676) pour une moyenne de $101,61 \pm 0,33$ g et un coefficient de variation de 26,25. Avec un poids moyen de cabosse de 599 g, un volume de cabosse de 625 cm³ et un poids moyen de cabosses vides (486,97 g), l'IFC 1201 se rapproche de l'UF 676 utilisé comme témoin. Il a été suivi au niveau du poids moyen des cabosses par le clone IFC 1037 (540,38 g) et au niveau du poids moyen de cabosse vide, par le témoin NA 32 (456,09 g). Le témoin UF 676 a

présenté les meilleures valeurs de poids moyen de cabosses (756,44 g), de poids moyen de fèves normales (179,9 g), d'épaisseur du cortex (1,71 cm) et de volume moyen de la cabosse (833,26 cm³). Il est suivi du clone SPEC 160 avec une épaisseur de cortex de 1,5 cm. Enfin, les clones IFC 1026 (2,14 t/ha); IFC 1027 (2,43 t/ha) et IFC 1041 (2,65 t/ha) ont présenté les meilleurs potentiels de production en termes de cacao marchand.

Comparaison des clones pour le grainage : Les résultats de l'étude comparative de 30 clones de la collection du CNRA pour les paramètres de grainage sont présentés dans le **tableau 6**. Il ressort de l'analyse du tableau qu'il existe une différence très hautement significative (P < 0,0001) entre les clones pour à la fois le poids moyen d'une fève fraîche, la longueur moyenne d'une fève, le nombre moyen de fèves normales par cabosse et le nombre de fèves pour 100 g de cacao marchand. Le poids d'une fève fraîche (PF) a été compris entre

2,02 g (IFC 1062) et 5,09 g (UF 676) pour une moyenne d'essai de 2.91 ± 0.67 et un coefficient de variation de 14,12. La longueur moyenne d'une fève (LoF) a varié de 2,03 cm (IFC 679) à 2,63 cm (UF 676) pour une moyenne de $2,25 \pm 0,39$ cm et un coefficient de variation de 8,29. Le clone IFC 1060 (47,67 fèves) a présenté le nombre de fèves normales le plus élevé. Il a été suivi par l'IFC 1062 (45,6) et l'IFC 706 (45,1). L'IFC 1037 a présenté le poids moyen de fèves normales le plus élevé (134 g). Il a été suivi du clone IFC 1058 (129 g). Le nombre moyen de fèves pour 100 g de cacao marchand a varié de 48,67 (UF 676) à 113,88 (GU 343/F) pour une movenne de 90,05 et un coefficient de variation de 3,06. Le témoin UF 676 a présenté le poids moyen d'une fève le plus élevé (5,9 g), suivi de l'IFC 1037 (3,8 g). Quant aux clones IFC 1058 et IFC 1025, ils respectivement présenté une bonne longueur (2,44 cm) et largeur (0,8 cm) moyenne de fèves.

Tableau 5. Valeurs moyennes (± écart type) de paramètres morphologiques des cabosses analysés chez 30 clones de cacaoyers de la collection du CNRA

Mean values (± standard deviation) of morphological parameters of pods analyzed in 30 cocoa clones from the CNRA collection.

Numéros	Clones	PC (g)	PCV (g)	EC (cm)	NFN (unité)	PFN (g)	VC (cm ³)
1	ACU 85	$336,73 \pm 76,62^{ghi}$	$245,76 \pm 62,2^{hij}$	$1,02 \pm 0,23^{abcde}$	$31,1 \pm 8,45^{ef}$	$85,01 \pm 24,72^{fg}$	$399,14 \pm 89,55^{efg}$
2	CC 39	$399,80 \pm 89,99^{\text{fgh}}$	$302,68 \pm 76,65^{\text{fghi}}$	$1,37 \pm 0,18^{abcde}$	$32,13 \pm 8,01^{\text{def}}$	$75,78 \pm 20,13^{g}$	$438,29 \pm 107,1^{\text{defg}}$
3	DLE 31	$358,68 \pm 90,12^{\text{fghi}}$	$251,6 \pm 73,45^{\text{hij}}$	$1,10 \pm 0,13^{abcde}$	$35,76 \pm 6,31^{bcdef}$	$98,55 \pm 20,18^{\text{defg}}$	$367,78 \pm 81,34^{efg}$
4	DLM 2	$392,31 \pm 78,1^{\text{fgh}}$	$282,83 \pm 66,26^{ghi}$	$1,12 \pm 0,2^{abcde}$	$38,77 \pm 6,98^{abcdef}$	$100,37 \pm 23,93^{\text{cdefg}}$	$500,04 \pm 88,23^{cdefg}$
5	GU 343/F	$336,71 \pm 59,59^{ghi}$	$246,20 \pm 44,83^{hij}$	$1,19 \pm 0,24^{abcde}$	$35,48 \pm 7,59^{bcdef}$	$81,4 \pm 20,1$ g	$414,38 \pm 58,31^{\text{defg}}$
6	GU 346/R	$371,12 \pm 78,87^{\text{fghi}}$	$272,08 \pm 63,89^{\text{ghij}}$	$1,38 \pm 0,18^{\text{abcde}}$	$29,54 \pm 4,33^{\text{f}}$	$78,73 \pm 18,43^{g}$	$407,86 \pm 77,76^{efg}$
7	IFC 1025	$342.2 \pm 75.6^{\text{ifgh}}$	$221,66 \pm 44,5^{ij}$	$1,05 \pm 0,10^{abcde}$	$41,05 \pm 8,21^{abcde}$	$122,99 \pm 22,02^{bcd}$	$404,76 \pm 55,69^{efg}$
8	IFC 1026	$333,79 \pm 63,51$ ^{ghi}	$226,38 \pm 47,64^{ij}$	$1,06 \pm 0,11^{\text{abcde}}$	38.9 ± 4.76^{abcdef}	$104,94 \pm 22,89^{\text{cdefg}}$	$368,5 \pm 62,36^{efg}$
9	IFC 1027	$346,16 \pm 54,23^{\text{fghi}}$	$237,79 \pm 38,5^{ij}$	$1,28 \pm 1,16^{abcde}$	$36,73 \pm 5,15^{bcdef}$	$104,13 \pm 19,41^{\text{cdefg}}$	$366,05 \pm 57,77^{\rm efg}$
10	IFC 1035	$324.8 \pm 40.21^{\text{hi}}$	$225,81 \pm 28,68^{ij}$	0.91 ± 0.14^{de}	44.5 ± 6.5^{abc}	$95 \pm 13,99^{\text{defg}}$	$325,41 \pm 53,11^{g}$
11	IFC 1037	$540,38 \pm 84,95$ ^{bc}	$401,11 \pm 56,77^{cde}$	$1,2 \pm 0,19^{abcde}$	37.9 ± 7.31^{abcdef}	$134,21 \pm 30,56^{b}$	$528,23 \pm 68,42^{bcdef}$
12	IFC 1041	$431,4 \pm 44,61^{\text{efgh}}$	$304,2 \pm 37,23^{\text{fghi}}$	$1,33 \pm 0,149^{abcde}$	$38,1 \pm 2,13^{abcdef}$	$124,1 \pm 14,54^{bcd}$	$476,31 \pm 56,77^{cdefg}$
13	IFC 1058	$524,6 \pm 77,95^{bcd}$	$385,6 \pm 58,56^{de}$	$1,06 \pm 0,107^{abcde}$	$41.3 \pm 7.47^{\text{abcde}}$	129.3 ± 26.29 ^{bc}	$522,1 \pm 96,98^{bcdef}$
14	IFC 1059	$425,6 \pm 102,69^{\text{efgh}}$	$300.8 \pm 63.27^{\text{fghi}}$	1 ± 0.12^{bcde}	42.4 ± 10.36^{abcd}	119.4 ± 40.38^{bcd}	$461,2 \pm 142,87^{cdefg}$
15	IFC 1060	$426.5 \pm 44.68^{\text{efgh}}$	$303,5 \pm 37^{\text{fghi}}$	$1,35 \pm 0,86^{abcde}$	$47,67 \pm 2,94^{a}$	$116,83 \pm 20,16^{\text{bcde}}$	$428,44 \pm 81,39^{defg}$
16	IFC 1062	$366,5 \pm 64,24^{\text{fghi}}$	$262 \pm 46,4^{\rm hij}$	0.92 ± 0.17^{cde}	45.6 ± 8.46^{ab}	$97.4 \pm 23.89^{\text{defg}}$	$386,41 \pm 71,16^{efg}$
17	IFC 1201	$599,86 \pm 124,52^{b}$	$486,97 \pm 98,94^{b}$	$1,39 \pm 0,12^{abcde}$	$36,43 \pm 11,33^{bcdef}$	$102,86 \pm 40,65^{\text{cdefg}}$	$625,57 \pm 128,13^{bc}$
18	IFC 6	$502,69 \pm 85^{\text{cde}}$	$396,28 \pm 58,98^{\text{cde}}$	$1.3 \pm 0.18^{\text{abcde}}$	$34,52 \pm 8,39^{cdef}$	$96,59 \pm 28,99^{\text{defg}}$	$523,64 \pm 79,02^{bcdef}$
19	IFC 679	$280,68 \pm 56,64^{i}$	$196,06 \pm 40,87^{j}$	$1,05 \pm 0,11^{abcde}$	$38,25 \pm 9,62^{abcdef}$	$79,37 \pm 20,62^{g}$	$339,04 \pm 60,17^{fg}$
20	IFC 682	$361,96 \pm 52,71^{\text{fghi}}$	$269,52 \pm 43,58^{\text{ghij}}$	$1,18 \pm 0,14^{abcde}$	$40,87 \pm 6,81^{abcde}$	$84,57 \pm 15,97^{fg}$	$447,15 \pm 78,06^{\text{defg}}$
21	IFC 683	$367,78 \pm 65,13^{\text{fghi}}$	280.8 ± 55.92^{ghi}	$1,3 \pm 0,15^{abcde}$	$37.5 \pm 9.83^{\text{bcdef}}$	$79,35 \pm 22,03^{g}$	$435,93 \pm 72,49^{\text{defg}}$
22	IFC 687	$391,56 \pm 69,99^{\text{fgh}}$	$272,27 \pm 53,47^{\text{ghij}}$	$1,03 \pm 0,11^{abcde}$	$38,97 \pm 8,94^{abcdef}$	$101,76 \pm 24,19^{\text{cdefg}}$	$471,32 \pm 76,54^{cdefg}$
23	IFC 698	$386,99 \pm 93,29^{\text{fgh}}$	$282,71 \pm 60,65^{ghi}$	$1,10 \pm 0,08^{\text{abcde}}$	$36,83 \pm 7,33^{bcdef}$	$88,06 \pm 20,97^{efg}$	$447,98 \pm 101,68^{\text{defg}}$
24	IFC 705	$445,22 \pm 68,45^{\text{def}}$	$324.8 \pm 56.36^{\text{fgh}}$	$1,39 \pm 0,194^{abcde}$	$42,13 \pm 8,09^{abcd}$	$107,75 \pm 24,04^{\text{bcdefg}}$	$482,74 \pm 76,69^{cdefg}$
25	IFC 706	$492,35 \pm 100,17^{\text{cde}}$	$368,27 \pm 79,74^{\text{def}}$	$1,41 \pm 0,186^{abcde}$	45.1 ± 8.8^{ab}	$114,12 \pm 28,63^{\text{bcdef}}$	$540,08 \pm 101,02^{\text{bcde}}$
26	SF 153	$390,68 \pm 77,12^{\text{fgh}}$	$284,04 \pm 61,93^{ghi}$	$1,24 \pm 0,14^{abcde}$	$38,08 \pm 7,13^{abcdef}$	$95,42 \pm 25,37^{\text{defg}}$	$456,52 \pm 95,55^{cdefg}$
27	SPEC 160-	$519,62 \pm 117,07^{bcd}$	$409,06 \pm 99,11^{cd}$	$1,5 \pm 0,15^{abcd}$	$30,67 \pm 6,76^{\rm f}$	$102,57 \pm 28,44^{\text{cdefg}}$	$592,54 \pm 144,29^{bcd}$
28	UPA 705	$432,89 \pm 97,15^{efg}$	$341,55 \pm 67,37^{\rm efg}$	$1,28 \pm 0,18^{abcde}$	$38,73 \pm 9,14^{abcdef}$	$97,26 \pm 27,86^{\text{defg}}$	$484,18 \pm 70,63^{cdefg}$
29	UF 676	$756,44 \pm 118,95^{a}$	$566,26 \pm 72,91^a$	1,71 ± 0,247 ^a	$36 \pm 5,24^{bcdef}$	179.9 ± 29.4^{a}	$833,26 \pm 86,32^a$
30	NA 32	$573,75 \pm 98,5$ bc	$456,09 \pm 126,55$ ^{bc}	$1,66 \pm 1,67^{ab}$	$35,81 \pm 9,58^{bcdef}$	119.8 ± 36.997^{bcd}	$674,13 \pm 548,25^{b}$
	Moyenne	$433,32 \pm 0,56$	$320,14 \pm 0,62$	$1,29 \pm 0,15$	$37,30 \pm 0,19$	$101,61 \pm 0,33$	479,21 ± 0,42±
	CV	21,36	22,64	37,89	21,13	26,25	26,83
	F	26,90	33,15	3,47	4,69	9,87	14,55
	P	< 0.0001	< 0,0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001

^{*} Les chiffres suivis de la même lettre dans la même colonne ne sont pas significativement différents au seuil P < 0.05 — The numbers followed by the same letter in the same column are not significantly different at P < 0.05.

PC: Poids moyen d'une cabosse- Average weight of a pod; PCV: Poids des cabosses vides- Weight of an empty pod; VC: Volume moyen d'une cabosse- Average volume of a pod; EC: Epaisseur moyenne du cortex d'une cabosse- Average thickness of the cortex of a pod; NFN: nombre moyen de fèves normales d'une cabosse- average number of normal pod beans; PFN: Poids moyen des fèves normales d'une cabosse- Average weight of normal pod beans

Tableau 6. Valeurs moyennes (± écart type) de quatre paramètres morpho-technologiques des fèves de cacao marchand de 30 clones de la collection de cacaoyers du CNRA

Mean values (± standard deviation) of four morpho-technological parameters of cocoa beans from 30 clones of the CNRA cocoa collection.

Numéro	Clones	PF (g)	LoF (cm)	LaF (cm)	Nf100 (cm)
1	ACU 85	$3,05 \pm 0,34^{efg}$	$2,34 \pm 0,13^{cdef}$	$0.8 \pm 0.09^{\circ}$	$71 \pm 1,73^{\text{b}}$
2	CC 39	$2,77 \pm 0,28^{hijk}$	$2.2 \pm 0.13^{\text{hij}}$	$0.7 \pm 0.09^{\text{fgh}}$	$90,13 \pm 2,8^{\text{fghij}}$
3	DLE 31	$3,11 \pm 0,41^{de}$	$2,44 \pm 0,18^{b}$	0.87 ± 0.11^{b}	$81,88 \pm 2,17^{cd}$
4	DLM 2	$2,88 \pm 0,33^{\text{hij}}$	$2,31 \pm 0,25^{\text{efd}}$	0.88 ± 0.12^{b}	$89 \pm 2{,}34^{\mathrm{fghi}}$
5	GU 343/F	$2,37 \pm 0,36^{ml}$	$2,19 \pm 0,22^{\rm hijk}$	$0.68 \pm 0.1^{\rm ghi}$	$113,88 \pm 2,37^{\circ}$
6	GU 346/R	$2,64 \pm 0,44^{k}$	$2.3 \pm 0.23^{\rm efg}$	0.76 ± 0.16^{d}	$100,33 \pm 1,15^{1}$
7	IFC 1025	$3,23 \pm 0,45^{cd}$	$2,40 \pm 0,2^{bc}$	$0.80 \pm 0.1^{\circ}$	$93,38 \pm 2,2^{ijk}$
8	IFC 1026	3.1 ± 0.39^{ef}	$2.2 \pm 0.22^{\text{hij}}$	$0.71 \pm 0.09^{\rm efg}$	$85,43 \pm 6,84^{\text{def}}$
9	IFC 1027	$3,04 \pm 0,44^{\rm efg}$	$2,13 \pm 0,23^{jkl}$	$0.73 \pm 0.11^{\text{efd}}$	$90,64 \pm 2,5^{\text{ghij}}$
10	IFC 1035	2.3 ± 0.27^{mn}	$2.2 \pm 0.2^{\text{hij}}$	0.56 ± 0.09^{k}	$112,67 \pm 1,53^{\text{no}}$
11	IFC 1037	3.8 ± 0.42^{b}	$2.2 \pm 0.15^{\rm hij}$	$0.72 \pm 0.09^{\rm efg}$	$81,25 \pm 0,5^{cd}$
12	IFC 1041	$3.2 \pm 0.46^{\text{cde}}$	$2,27 \pm 0,16^{\text{fgh}}$	$0.71 \pm 0.11^{\rm fg}$	- '
13	IFC 1058	$3.1 \pm 0.35^{\text{de}}$	$2,44 \pm 0,24^{b}$	$0.66 \pm 0.1^{\rm hij}$	-
14	IFC 1059	$2,92 \pm 0,45^{\rm fgh}$	$2,35 \pm 0,18^{\text{cdef}}$	0.57 ± 0.09^{k}	94.5 ± 2.12^{jk}
15	IFC 1060	$2,42 \pm 0,31^{ml}$	$2,23 \pm 0,15^{\rm ghi}$	0.51 ± 0.1^{1}	109.5 ± 3.54^{mn}
16	IFC 1062	$2,02 \pm 0,23^{p}$	2.1 ± 0.14^{ml}	0.55 ± 0.1^{k}	- '
17	IFC 1201	$2,92 \pm 0,61^{\text{fgh}}$	$2,30 \pm 0,25^{\rm efg}$	$0.73 \pm 0.11^{\text{efd}}$	$90 \pm 2,83^{\mathrm{fghij}}$
18	IFC 6	$2.88 \pm 0.41^{\text{hij}}$	$2,17 \pm 0,21^{ijk}$	0.76 ± 0.12^{d}	$83,88 \pm 1,25^{de}$
19	IFC 679	$2.2 \pm 0.33^{\text{no}}$	$2,03 \pm 0,18^{m}$	0.64 ± 0.13^{ij}	$107,17 \pm 3,31^{m}$
20	IFC 682	$2,12 \pm 0,25^{\text{op}}$	$2,02 \pm 0,15^{m}$	0.64 ± 0.1^{ij}	$108.7 \pm 2.45^{\text{m}}$
21	IFC 683	$2,08 \pm 0,39^{\text{op}}$	$2,04 \pm 0,18^{m}$	0.58 ± 0.11^{k}	$105,83 \pm 2,14^{\text{m}}$
22	IFC 687	$2,82 \pm 0,4^{\text{hij}}$	$2,38 \pm 0,19^{\text{bcdef}}$	0.63 ± 0.09^{j}	$87,92 \pm 1,62^{\text{efgh}}$
23	IFC 698	$2,49 \pm 0,29^{1}$	$2,11 \pm 0,14^{kl}$	0.59 ± 0.11^{k}	$88,55 \pm 2,21^{\text{fghi}}$
24	IFC 705	$2,72 \pm 0,36^{ijk}$	$2,14 \pm 0,16^{jkl}$	0.6 ± 0.11^{k}	$96,91 \pm 2,47^{k}$
25	IFC 706	$2,69 \pm 0,39^{jk}$	$2,27 \pm 0,15^{\text{fgh}}$	0.64 ± 0.09^{ij}	$91,64 \pm 2,73^{\text{hij}}$
26	SF 153	$2,74 \pm 0,27^{ijk}$	2.3 ± 0.18^{efg}	$0.67 \pm 0.09^{\text{hij}}$	$86,22 \pm 1,92^{\rm efg}$
27	SPEC 160	$3,34 \pm 0,5^{\circ}$	$2,39 \pm 0,16^{bcd}$	$1,03 \pm 0,1^{a}$	- '
28	UPA 705	$2,51 \pm 0,24^{1}$	$2,18\pm0,7^{ijk}$	0.64 ± 0.09^{ij}	$92,27 \pm 1,42^{\text{hij}}$
29	UF 676	$5,09 \pm 0,8^{a}$	$2,63 \pm 0,19^{a}$	0.91 ± 0.11^{b}	$48,67 \pm 1,37^{a}$
30	NA 32	$3,26 \pm 0,53^{\circ}$	$2,13 \pm 0,19^{jkl}$	$0.74 \pm 0.13^{\text{efd}}$	$78.5 \pm 0.71^{\circ}$
	Moyenne	2.91 ± 0.67	$2,25 \pm 0,39$	0.7 ± 0.49	$91,49 \pm 0,51$
	CV	14,12	8,29	14,89	3,06
	F	191,59	62,13	91,49	168,21
	P	< 0,0001	< 0,0001	< 0.0001	< 0.0001

^{*}Les chiffres suivis de la même lettre dans la même colonne ne sont pas significativement différents au seuil P < 0.05 — The numbers followed by the same letter in the same column are not significantly different at P < 0.05.

PF: Poids moyen d'une fève - *Average weight of a bean*; **LoF**: Longueur moyenne d'une fève- *Average length of a bean*; **LaF**: Largueur moyenne d'une fève - *Average width of a bean*; **Nf100**: Nombre de fèves pour 100 g de cacao marchand- *Number of beans per 100 g of cocoa*.

DISCUSSION

L'analyse portant sur 394 clones de la collection a montré une différence très hautement significative à la fois pour le potentiel de production, le taux de cabosses pourries et le taux de cabosses attaquées par les mirides. Les clones mis à l'épreuve dans cette étude, sont donc différents aussi bien pour le nombre total de cabosses que pour le niveau de sensibilité à la pourriture brune des cabosses et aux mirides. Pour les 54 meilleurs clones, le nombre total de cabosses a varié de 40,2 à 149,4 cabosses par arbre. Les trois génotypes en tête de classement pour le nombre total de cabosses dont l'IFC 1027 (149 cabosses par arbre), l'IFC 1041 (137 cabosses par arbre) et l'IFC 1026 (131 cabosses par arbre) sont tous des hybrides clonés. Les valeurs de rendements potentiels annuels correspondants de ces génotypes, tenant compte du poids moyen des cabosses, sont respectivement estimées à 1,98 tonnes/ha; 2,27 tonnes/ha et 1,68 tonnes/ha. Dans les conditions de plantation en collection, la majorité des 54 clones prometteurs semblent avoir une performance supérieure au témoin de référence NA 32 aussi bien pour le nombre total de cabosses (50 cabosses par arbre) que pour le niveau de sensibilité au champ des cabosses vis-à-vis de la pourriture brune brune sur le site de la Station de Divo. Il faut relever que les clones de type IFC sont aussi bien retrouvés en tête de classement (IFC 1027, IFC 1041, IFC 1026), au bas du classement (IFC 687, IFC 7, IFC 711) qu'au milieu du classement (IFC 705, IFC 1039, IFC 1037), ainsi une variabilité indiquant génétique importante au sein de ces clones pour ce caractère. Ce constat est aussi vérifié au niveau du taux de cabosses pourries. Cela suggère que les clones de type IFC qui sont soit des hybrides clonés, soit issus des prospections locales (Besse, 1976) seraient une bonne source pour la recherche de clones à haut rendements. En effet, ces résultats sont en accord avec les travaux de Motamayor et al. (2003) qui ont montré que les bas amazoniens sont majoritairement caractérisés par une bonne productivité. Par ailleurs, neuf (9) clones (IFC 1027, IFC 1041, IFC 1026, GU343/F, CC 39, IFC 1035, IFC 1038, DLM 2, IFC 1201) ont présenté une bonne performance à la fois pour le nombre total de cabosses (NTC supérieur à 100 cabosses par arbre), le taux de cabosses pourries (TCP compris entre 0 et 10 %) et le taux de cabosses attaquées par les mirides (TAM compris entre 0 et

13 %). Ces résultats indiqueraient que ces clones potentiellement bons pour le nombre de cabosses, le sont également pour la résistance au champ visà-vis de la pourriture brune et des attaques de mirides. C'est en particulier le cas pour les clones IFC 1027, IFC 1026, CC 39, IFC 1035, IFC 1038 et DLM 2. Concernant l'évaluation des 30 clones potentiellement hauts producteurs et résistants au champ à la pourriture brune des cabosses, les résultats ont montré une différence très hautement significative entre les génotypes pour chacun des paramètres analysés. Les clones ont présenté des performances inférieures à celle du témoin de référence UF 676, en tête de classement pour le poids moyen d'une cabosse (PC), le poids de cabosse vide (PCV), l'épaisseur du cortex de la cabosse (EC), et le volume de la cabosse (VC). La grande épaisseur du cortex du clone témoin UF 676 (1,71 cm) lui confèrerait des aptitudes à retarder la progression des zoospores de P. palmivora dans les tissus du péricarpe de la cabosse. Cela constitue un avantage pour préserver les fèves de cacao des infections au champ causées par la pourriture brune (Tahi, 2003). Par ailleurs, l'hybride cloné IFC 1060 (UPA 412 x IFC1) a présenté le nombre le plus élevé de fèves normales. Selon plusieurs auteurs, ce paramètre devrait être pris en compte pour l'amélioration du rendement du cacaoyer (Cilas et al., 2009). Il constitue également un indicateur de fertilité apparente et donc de remplissage des cabosses (fertilité apparente) des génotypes (Lachenaud et al., 2006). En effet, une corrélation positive et significative a été mise en évidence entre le nombre de fèves par cabosse et la fertilité apparente (Lachenaud et al., 2006). L'IFC 1201 (PA 150 x IFC 5) s'est également distingué par son poids moyen de cabosses élevé (599,9 g). Les hybrides clonés IFC 1025 (T38 x UPA 402), IFC 1035 (UPA206 x IFC1), IFC 1059 (UPA418 x IFC1), IFC 1060 (UPA418 x IFC1), IFC 1062 (UPA606 x IFC405), IFC 705 (T60/974 x Inconnu) et IFC 706 (T60/974 x inconnu), qui ont en commun au moins un parent haut amazonien, ont été plus performants pour le nombre de fèves normales (NFN) et le poids de fèves normales (PFN). Ces résultats sont en accord avec ceux d'Assemat et al. (2005), qui ont montré que les variétés de cacaoyers appartenant au groupe des hauts amazoniens présenteraient un nombre élevé de fèves par cabosse.

En outre les résultats ont indiqué un effet clone très hautement significatif pour le poids moyen d'une fève (PF), la longueur d'une fève (LoF), la largeur d'une fève et le nombre de fèves pour 100 g de cacao marchand (Nf100). Le témoin UF 676 a été en tête de classement pour à la fois le PF, la LoF et le Nf100, et se situe en deuxième position dans le classement pour la largeur moyenne d'une fève (LaF), après le clone SPEC 160. Ces résultats

montrent ainsi que le témoin UF 676 (appartenant au groupe des Trinitario) s'est révélé à la fois performant pour les caractères mesurés sur les cabosses et sur les fèves. Ces résultats confirment ainsi les performances des clones du groupe « Trinitario » pour leur caractère de qualité, notamment la grosseur de leurs fèves (Lachenaud *et al.*, 2001).

CONCLUSION ET APPLICATION DES RESULSTATS

L'objectif de l'étude a été de sélectionner parmi 394 clones de cacaoyers de la collection du CNRA, reconnus potentiellement hauts producteurs et résistants au champ à la pourriture brune des cabosses, les génotypes présentant un bon grainage. Il ressort de ce travail, que tous les clones mis à l'épreuve ont été différents pour l'ensemble des caractères agronomiques étudiés, aussi bien sur les cabosses que sur les fèves. Les hybrides clonés IFC 1027, IFC 1041 et IFC 1026 ont été, dans les conditions de plantation du matériel végétal en collection, les plus productifs, avec un nombre total de cabosses par arbre variant de 131 à 149. Par ailleurs, il ressort de cette étude que les clones ACU 85 (avec 71 fèves pour 100 g de cacao

marchand) et IFC 1037 (3,8 g) ont présenté de très bon grainage. En raison de leurs bonnes caractéristiques technologiques ces clones pourraient être utilisés comme des potentiels géniteurs pour l'amélioration génétique des caractères de production, de résistance au champ à la pourriture brune des cabosses et aux mirides. Ce travail a permis de renforcer les connaissances sur les caractéristiques des cacaoyers de la collection de travail du CNRA. Cependant au vu de la nature quantitative de certains des paramètres évalués, ces résultats obtenus nécessitent d'être confirmés dans des essais prenant en compte un dispositif plus approprié afin de réduire l'effet environnement.

REMERCIEMENTS

Les auteurs adressent leurs remerciements au Centre National de Recherche Agronomique de Côte d'Ivoire (CNRA) pour la mise à disposition du matériel végétal et technique. Ils remercient également l'Unité de Phytotechnie et Amélioration génétique de l'Université Nangui Abrogoua

d'Abidjan (Côte d'Ivoire) pour la collaboration scientifique. Enfin, les auteurs adressent toute leur gratitude au Conseil du Café-Cacao à travers le FIRCA pour le financement des activités qui ont permis l'élaboration de ce travail.

REFERENCES BIBLIOGRAPHIQUES

- Ali S.S., Shao J., David J., Mary L.D., Lyndel S., Meinhardt W. & Bailey B.A., 2017. *Phytophthora megakarya* and *P. palmivora*, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods. *Front Plant Sci*, **8**, 169.
- Alverson W.S., Whitlock B.A., Nyffeler R., Bayer C. & Baum D.A., 1999. Phylogeny of the core Malvales: evidence from ndhF sequence data. *American Journal Botany* **86** (**10**): 1474-1486.
- Assemat S., Lachenaud P., Ribeyre F., Davrieux F., PradonJ-L. & Cros E., 2005. Bean quality traits sensory evaluation of wild Guiana cocoa populations. *Genetics Resources and Crop Evolution* 52 (7) 911–917.
- Besse J., 1976. Liste des clones représentés dans les collections de cacaoyers de l'I.F.C.C en Côte d'Ivoire. Rapport I.F.C.C. Bingerville (Côte d'Ivoire) 7 pages.
- Chessman E.E., 1944. Notes on the nomenclature, classification and possible relationships of cocoa populations. *Tropical Agriculture* **21**,144-159.

- Cilas C., Machado R. & Motamayor J.C., 2009.

 Distribution du nombre de graines par cabosse chez plusieurs clones de cacaoyer: un caractère à prendre en compte pour l'amélioration des rendements. 16ème Conférence internationale sur la recherche cacaoyère, Bali (Indonésie), 20 pages.
- Cope F.W., 1958. Incompatibility in Theobroma cacao. *Nature*, 181: 279.
- Figueira A., Janik J. & Goldsbrough P., 1992. Genome size and DNA polymorphism in Theobroma cacao. *Journal of the American Society for Horticultural Science*, **117**, 673-677.
- International Cocoa Organization (ICCO) 2017. Quarterly Bulletin of Cocoa Statistics, Vol. XLIII, No. 3, Cocoa year 2016/2017.
- International Cocoa Organization (ICCO) (2014). Quarterly bulletin of Cocoa statistics, vol, No. 4, Cocoa year 2012/2013.
- Konate Z., Assiri A. A., Messoum F G., Sekou A., Camara M. & Yao-Kouame A. (2016). Identification de quelques contraintes paysannes en replantation cacaoyère en Côte D'ivoire. REV. CAMES - VOL.04 NUM.02. 2016 * ISSN 2424-7235
- Kouame N.N., N'guessan K.F., N'guessan A.H., N'guessan P.W. & Tano Y., 2014. Variations saisonnières des populations de mirides du cacaoyer dans la région de l'Indénié-Djuablin en Côte d'Ivoire. *Journal of Applied Biosciences*, **83**, 7595–7605 ISSN 1997-5902.
- Lachenaud P., Oliver G., Bastide P. & Paulin D., 2006. Le remplissage des cabosses des cacaoyers spontanés de Guyane (*Theobroma cacao* L.). *Acta Botanica Gallica*, **153** (1), 105-114.
- Lachenaud P., Eskes A.B., N'goran J.A.K., Clement D., Kebe I., Tahi G. M. & Cilas C., 2001. Premier cycle de sélection récurrente en Côte d'Ivoire et choix des géniteurs du second cycle. In: Proceedings of the 13th International Conference on Cocoa Research, Kota Kinabalu, Sabah, (Malaysia), pp 11-22.
- Motamayor J.C., Risterucci A.M., Heath M. & Lanaud C., 2003. Cacao domestication II progenitor germplasm of the Trinitario cacao cultivar. *Heredity* 9: 322-330.

- Pires J.L., Monteiro W.R., Edmn L., SDVM S., LRM P., Figueria A., Ahnert D.E. & Bruggnerotto M.I.B., 1998. in: Proc. International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement. INGENIC, Bahia (Brazil) pp 91-101.
- Roose E. & Jadin P., 1969. Erosion, ruissèlement et drainage sur un sol à cacao en moyenne Côte d'Ivoire. Station I.F.C.C. près de Divo: milieu, dispositif et résultats des campagnes 1967-1968. ORSTOM (I.F.C.C.), Abidjan (Côte d'Ivoire) 77 pages.
- Tahi G.M., 2003. Evaluation sur feuille de cacaoyer de la résistance à Phytophthora palmivora, agent de la pourriture brune des cabosses. Thèse de doctorat : Université de Cocody, Abidjan (Côte d'Ivoire), 133 pages.
- Tahi G.M., Lachenaud P., N'guessan K.F., N'Goran N.K.J., Pokou D., Kébé I.B., Paulin D., Cilas C. & Eskes A.B., 2011. Selection of new varieties on-station and on-farm in Côte d'Ivoire. Final Report of the CFC/ICCO/Bioversity International Project on "Cocoa Productivity and Quality improvement: a Participatory Approach" (2004-2010) pp 42 -58.